
WHAT IS SOFTWARE

PERFORMANCE

ENGINEERING?
By Michael Foster

www.cmgaus.org

DEFINITION

 Software Performance Engineering is:

A systematic and quantitative approach for the cost

effective development of software systems to meet

stringent Non Functional Requirements.

Or

The set of tasks or activities that need to be performed

across the Software Development Life Cycle (SDLC) to

meet the documented Non Functional Requirements.

PERFORMANCE TESTING IN THE SDLC

Performance

Testing

Unit

Testing

Requirements

Review

PERFORMANCE ENGINEERING

IN THE SDLC

Performance

Testing

Coding

Standards &

Unit

Performance

Define Non

Functional

Requirements

Design for

High

Performance Monitor, Optimise,

Manage Capacity

ADVANTAGES OF SPE

 Creating a clear set of Non Functional Requirements lays foundation for

successful development.

 Early and constant focus on system performance at each stage prevents

expensive changes late in the project.

 Performance monitoring in production maintains system performance

and reliability, and allows capacity to be expanded before it is exceeded.

 Proactive approach allows problems to be avoided, keeping focus on the

development rather than firefighting.

 With the successful delivery of a system that performs to the client’s

requirements, the client gets full value for money.

REQUIREMENTS ANALYSIS

Performance

Testing

Coding

Standards &

Unit

Performance

Define Non

Functional

Requirements

Design for

High

Performance Monitor, Optimise,

Manage Capacity

DEFINITION – REQUIREMENTS ANALYSIS

 Activities performed to identify the Performance Engineering related
objectives for the system.

 Non Functional Requirements include:

 Scalability Requirements

 Availability Requirements

 Reliability Requirements

 Performance Requirements

 These requirements must be documented, socialised and agreed by all
stakeholders so that Performance expectations are set early in the
development cycle.

 This phase sets the stage for the rest of the Performance Engineering
activities that need to be performed across the SDLC.

REQUIREMENTS ANALYSIS ACTIVITIES

 Review Business Requirements and other program documentation –

understand the business case and objectives and the platforms being

used to deliver them.

 Review production performance metrics if there is an existing version.

 Determine Non Functional Requirements – essential so that system

performance goals can be set, and measured against.

 Determine Tools, Resourcing, Infrastructure and Licencing requirements

– early identification of these needs allows the program to budget, find

resources, purchase tools and hardware, install them and provide

training.

DESIGN FOR PERFORMANCE

Performance

Testing

Coding

Standards &

Unit

Performance

Define Non

Functional

Requirements

Design for

High

Performance Monitor, Optimise,

Manage Capacity

DESIGN PHASE ACTIVITIES

 Validate Architectural Options – provide input from a performance

perspective to the architecture being recommended.

 Determine Infrastructure Capacity Required – By combining the Non

Functional Requirements with the Architecture design, determine the

underlying infrastructure requirements.

 Set Performance Targets for Developers – Single user performance

targets for the development teams across application components and

tiers. These are used for unit performance tests.

BUILD FOR PERFORMANCE

Performance

Testing

Coding

Standards &

Unit

Performance

Define Non

Functional

Requirements

Design for

High

Performance Monitor, Optimise,

Manage Capacity

BUILD PHASE ACTIVITIES

 Oversee the development and monitor Unit Performance Testing.

 Develop Workload Models:

 Business Workload – the set of activities that the users will undertake on the system

to achieve business goals. Including any peak load periods or regular cycles (monthly,

quarterly), expressed as Transactions per hour.

 Infrastructure Workload – The workload on the underlying infrastructure CPU,

Memory, & Network utilisation etc.

 Set up Performance Monitoring – Install and configure application and

infrastructure monitoring tool(s) to measure the application’s

performance against the SLAs.

PERFORMANCE TESTING

Performance

Testing

Coding

Standards &

Unit

Performance

Define Non

Functional

Requirements

Design for

High

Performance Monitor, Optimise,

Manage Capacity

PERFORMANCE TESTING ACTIVITIES

 Build a set of Performance Tests that will simulate the Workload Model.

 Use the tests to validate the Non Functional Requirements.

 Use Performance Monitoring to identify application bottlenecks.

 Identify application breaking point.

 Validate the impact of code and configuration changes on application

performance.

 Provide a Pass/Fail result to the program on whether the Non

Functional Requirements have been met.

PRODUCTION

Performance

Testing

Coding

Standards &

Unit

Performance

Define Non

Functional

Requirements

Design for

High

Performance Monitor, Optimise,

Manage Capacity

MAINTAINING PERFORMANCE IN

PRODUCTION

 Use Performance Monitoring to constantly assess application

performance, and to identify when the system is approaching its

capacity.

 Use Capacity Management to provide the required infrastructure

capacity to sustain growth in business workloads.

 Provide production workload data to the program that is developing the

next release of the application.

RESOURCES

www.cmgaus.org

www.practicalperformanceanalyst.com

QUESTIONS

