# Introduction to Penetration Testing

**Graham Weston** 

March 2014



# **Agenda**

Introduction and background Why do penetration testing?

- Aims and objectives
- Approaches

## Types of penetration test

- What can be penetration tested?
- How to do a penetration test

Penetration test workflow
Tools, standards and techniques

## What is a Penetration Test?

## Wikipedia says:

"A **Penetration Test**, or the short form pentest, is **an attack on a computer system with the intention of finding security weaknesses**, potentially gaining access to it, its functionality and data"

## What is a Hacker?

## Wikipedia says:

"A hacker is someone who seeks and exploits weaknesses in a computer system or computer network. Hackers may be motivated by a multitude of reasons, such as profit, protest, or challenge."

## So, what's the difference?

#### Their motives; both have overlapping skill sets.

#### The penetration tester (white hat):

- Works with the knowledge and consent of the system owner
- Should not cause lasting damage to the target system
- Has constructive goals (to find security issues that can be fixed)
- Obliged to responsibly disclose their findings

#### The hacker (black hat):

- Works to avoid detection by the system owner
- Actively works to conceal their capability (0-day exploits etc.)
- Has a range of nefarious motives:
  - Credibility in the underground community
  - Cause damage/disruption
  - Steal for material gain

# (i) Health Warning

# The tools and techniques discussed here are powerful:

- They should only be used under controlled conditions (and with the express consent of the owner of the system under test)
- Professional penetration testers are bound by strict codes of practise and ethics
- The distinction between penetration testing and hacking is entirely contextual

### In short, don't try this at home!



# Why Do Penetration Testing?

# Why do Penetration Testing?

To better understand and quantify the risks posed to a system by external attackers.

For example, what would happen if:

- A corporate web site was defaced or taken down?
- The passwords and customer details to your webbased banking service were published on the Internet?
- An attacker could gain access to the control systems of a major factory/power station/water plant?

A pentest gives a measure of confidence that the most significant risks to a system have been adequately mitigated.

# **Types of Penetration Test**

#### Pentests can be categorised in to several main types:

- Physical (gaining physical access to facilities)
- Hardware (what can be done if an attacker has physical access to the system under test)
- Network (where an attacker has access to a network connected to the system under test)
- Web (focussing specifically on the web front-end to the system under test)

In practise, a pentest may span several of these areas.

## What do I get from a Pen Test?

## **Ideally:**

Independent verification that the system under test resists a range of common attacks and exploits.

## **Practically:**

Information about the weaknesses identified in the system under test.

# What don't I get from a Pen Test?

- Generally, a pentest focuses on finding a way to successfully attack and exploit the system under test at the time of testing.
- It's not an exhaustive audit of the system security.
- Pentests only identify vulnerabilities that are known about at the time of the test. Attack techniques are constantly evolving and improving.

A **vulnerability assessment** is a more detailed, extensive audit of the security of a system.



# How to Do a Penetration Test

# A practical approach:

#### Scenario:

You are set a the challenge of carrying out a physical penetration test on an office building.

Your goal is to breach the security of the building and locate items of interest inside.

How would you do it?

# A practical approach:



- Dress up as an aircon engineer?
- Carry a toolbag?
- Wear an ID badge?

## A practical approach:

- Make a plan
- Gather information
  - How many doors are there? Where are they?
  - Are the doors locked? Can the locks be defeated?
  - Is it possible to get in any other way? A window, ventilation duct?
  - When is best to go in?
  - How best to avoid being noticed?
  - Once inside, how to identify what is of interest?
- Execute plan
- Report on weaknesses in physical security identified

## **Penetration Test Workflow**



This practical, physical example maps on to a generic workflow that is widely applicable

## **Pen Test Workflow - Plan**



#### **Planning:**

- Define scope and requirements for test
- Plan test approach
  - White box
  - Black box
  - Hybrid (grey box)
- Identify suitable tools
  - COTS, open-source, bespoke

## Pen Test Workflow – Gather Info



#### Information gathering:

- Identify components of target system
- COTS components
  - Identify versions
  - Look for publically disclosed vulnerabilities and exploits
- Bespoke components
- Inspection of source code and configuration information in white box scenario

## Pen Test Workflow – Discovery



#### **Discovery:**

- Practical investigation of target system
- Initial checks:
  - TCP ports open?
  - Services running?
  - Default/weak user credentials?
- Information leakage
- Automated tools/Industry standard checks (OWASP etc.)

# Pen Test Workflow – Exploitation



#### **Exploitation:**

- Using information gained in discovery phase, is it possible to exploit the system?
- Common attacks:
  - COTS tools (metaspolit, CANVAS and other frameworks)
  - Exploits in public domain (CVE database)
  - SQL injection, XSS, session hijacking etc.
- Identify areas for further investigation

# Pen Test Workflow – Cleanup



#### **Cleanup:**

- Document findings
- Make recommendations; identify risks not fully mitigated in scope of current task
- Reverse any changes made to target system

# Pen Test Workflow – Cleanup



#### Report:

- Release formal documentation
- Identify next steps/way forward
- Closure with client



# Tools, Standards and Techniques

## **Physical Engagements**

Effectively implementing the building scenario discussed earlier.

### **Techniques:**

- Social engineering
- Identifying and defeating access controls
- Remote attacks

#### **Tools:**

- Specialised hardware
- Uniform and ID badges

# **Network Engagements**



## **Automated Tools**

#### The good news:

- Commercial and open-source tools take away much of the hands-on complexity, using GUIs to drive the process
- In many cases, it is possible to deliver quick wins without coding, scripting, or having a detailed understanding of the underlying technologies
- High-level tools produce a visualisation of the target network allowing you to deploy exploits and navigate it graphically

#### The bad news:

- They are not a panacea; automated tools will only find well-known, existing vulnerabilities
- Finding really valuable vulnerabilities is a more labour-intensive process, dependent on a skilled pen-tester

## **Popular Standards**

**OWASP** (Open Web Application Security Project)

www.owasp.org

**OSSTMM** (Open Source Security Testing Methodology Manual) <a href="https://www.osstmm.org">www.osstmm.org</a>

**NIST** (National Institute of Standards and Technology) <a href="mailto:csrc.nist.gov/publications/nistpubs/800-115/SP800-115.pdf">csrc.nist.gov/publications/nistpubs/800-115/SP800-115.pdf</a>

**PTES** (Penetration Testing Execution Standard) <a href="https://www.pentest-standard.org">www.pentest-standard.org</a>



# **Conclusions**

## Conclusions

- The fundamental concepts for a pentest are common across a range of activities, ranging from a building to a web-app
- The best approach for each engagement should be tailored using a combination of external standards, knowledge of the target system and tester experience.
- There are standards, such as OWASP, which provide a good (but not exhaustive) approach.
- Commercial and open-source tools offer a range of useful functionality:
  - Automating common and labour intensive tasks
  - Managing the workflow
  - Visualising the target network
  - Deploying exploits in a point-and-click paradigm



Questions?